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Abstract

In neoclassical models, transitory income shocks should not affect labor supply.
This prediction has often been rejected empirically in favor of theories featuring
reference-dependent preferences. We show that apparent negative daily income
effects can be generated in a neoclassical model of labor supply by dynamic
selection, where wage variation causes differential attrition throughout workers’
shifts. Using data from an RCT with experimental variation in wages and fine
measures of labor supply, we show that estimates of negative income effects are an
artifact of dynamic selection in this setting, providing a neoclassical explanation
to the findings of the income-targeting literature. JEL codes: C90, D90, J22
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In neoclassical models of labor supply, workers consider their lifetime wealth when deciding
how much labor to provide. This implies that transitory income shocks should not impact
labor supply meaningfully. Starting with Camerer et al. (1997), a series of prominent papers
have challenged this basic principle by showing a negative relation between daily income
earned and labor supply in different settings. This empirical pattern is widely interpreted as
evidence of income targeting, a theory in which workers set a daily earnings goal and choose
their labor supply in order to reach it. Under this theory, a positive shock to daily earnings
brings workers closer to their target, thereby reducing hours worked in the day.

In this paper, we propose and test the relevance of an alternative, neoclassical explanation
for the negative relation between same-day earnings and labor supply estimated by hazard
models.1 We elucidate the relation between earnings and labor supply in a model of daily
labor supply, in which workers face an optimal-stopping problem to decide when to end their
shift. We allow for a general utility function that includes current wages, hours worked,
and a term capturing unobserved (by the econometrician) heterogeneity. We allow the
heterogeneity to vary across workers and shifts, capturing changes in workers’ labor supply
costs due to, for example, tiredness, malnutrition (Schofield, 2014), or financial distress (Kaur
et al., 2019). By design, our model rules out income effects, which excludes the possibility
of workers engaging in income-targeting strategies.

Our model generates two key insights. First, even without income effects, labor supply is
negatively related to earnings under general conditions due to dynamic selection (Diamond
and Hausman, 1984). It suffices for utility to be increasing in contemporaneous wages and
weakly decreasing in hours worked, and there is some unobserved heterogeneity affecting
labor supply. To understand this result, consider a worker at two different periods of a
shift, in two states of the world: a low- and a high-energy state, where the worker has,
respectively, a high and a low cost of effort. To estimate daily income effects, at t = 2
we compare the hazard rate (i.e., the probability of ending the shift) between workers who
received, respectively, a high and a low wage at t = 1.

Consider a situation where the worker faces a low wage at t = 1. In that scenario, she may
decide to keep working only in the high-energy state because the low financial incentives do
not offset her high cost of effort in the low-energy state. In contrast, if she faces a high wage
at t = 1, the high financial incentives may incentivize her to extend her shift even in the

1Researchers often estimate income targeting using hazard models (e.g., Farber, 2005). In this approach,
income effects are identified by regressing a dummy of the decision to stop working for the day on cumulative
daily earnings using intra-day data on labor supply and earnings. An alternative approach consists of
exploring wage variation across days, regressing hours worked on daily wages (e.g., Fehr and Goette, 2007,
Angrist et al., 2017). In this approach, a negative elasticity of labor supply with respect to wages is interpreted
as evidence of income targeting. However, this approach cannot disprove expectation-based theories of income
targeting Kőszegi and Rabin (2006).
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low-energy state. In that case, at t = 2, all low-wage workers who keep working are in the
high-energy state, while high-wage workers have a mix of high- and low-energy states. Thus,
workers who receive a low wage at t = 1 and “survive” are positively selected. As such, they
are less likely to stop working at t = 2, which implies a negative correlation between daily
earnings and labor supply despite the nonexistence of income-targeting strategies.

Second, our model predicts that dynamic selection can generate a pattern where the
relation between labor supply and earnings is stronger for more recent earnings, although
this is not granted to occur. Thakral and Tô (2020) find such a pattern in the context of
cab drivers and rationalize it with a theory of adaptive reference-point formation. In their
theory, workers gradually adjust their reference point to account for variations in income
accumulated earlier in their shift. Thus, earnings accumulated early in the shift help form
the workers’ income target to a larger degree than earnings accumulated later on. This
reduces the impact of less recent earnings on labor supply in comparison to more recent
ones. Our model can provide an alternative, neoclassical explanation to such a pattern.

We investigate the empirical relevance of dynamic selection using rich data from an RCT
with low-income workers in Chennai, India (Bessone et al., 2021). Four hundred and fifty two
participants worked for up to 28 days in a full-time data-entry job. They had considerable
discretion over their labor supply, deciding their time of arrival and departure, when to take
breaks, and how much effort to exert at their work, making the work in our setting similar
to other jobs with flexible working hours. The data set contains precise measures of labor
supply, captured by keystroke-by-keystroke data. Moreover, most of participants’ earnings
depended on an observable piece rate that fluctuated exogenously between a low and a high
value throughout the day. This allows us to investigate income effects without the concern
that wages might be endogenous.

We first follow the literature and estimate income effects using a standard hazard model,
which does not address dynamic selection. We find a strong, negative relation between la-
bor supply and cumulative earnings, consistent with both income targeting and dynamic
selection. Workers randomly assigned to high piece rates earlier in the shift had a higher
hazard rate, exerted less effort, and spent more time in work breaks. The results are precisely
estimated and larger than estimates in other settings (e.g., Farber, 2015, Thakral and Tô,
2020). Similarly to Thakral and Tô (2020), we find that income effects are largely concen-
trated in more recent income variation, consistent with the theory of adaptive reference-point
formation.

Next, we consider the importance of dynamic selection in driving the empirical patterns
in our setting. We apply a nonparametric approach that eliminates dynamic selection. After
accounting for dynamic selection, we find no evidence of negative income effects on hazard
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rates, effort, or work breaks. Importantly, we are well powered to reject the null of no daily
income effects. Thus, in our setting, controlling for dynamic selection leads to the rejection
of income-targeting and adaptive reference-point formation models.

We corroborate this finding with two additional pieces of evidence. First, the participants
were randomly assigned to short shifts for a few days, in which they received a large incentive
to stop working exactly at 5:00 pm. This effectively shut down the extensive margin of labor
supply, a necessary condition for dynamic selection. Importantly, workers could still adjust
labor supply via effort provision or work breaks, allowing us to test for income targeting
in both dimensions. We find no evidence of income targeting in either. Second, in the
Appendix we explore random variation in payments for a different study task. This task
was mandatory, and the participants only learned about the payment level moments before
the task. Thus, they could not end the shift in response to their payment level before or
during the task, which could lead to dynamic selection. Further corroborating the dynamic
selection hypothesis, we find that the payments do not affect labor supply for the rest of the
day.

Our paper makes two contributions to the income-targeting literature (Camerer et al.,
1997, Farber, 2005, 2008, 2015, Crawford and Meng, 2011, Chang and Gross, 2014, Andersen
et al., 2018, Hammarlund, 2018, Dupas et al., 2020). First, we explore the existence of
income targeting in a novel setting using randomized intra-day wage variation to address
endogeneity concerns present in most previous work.2 Moreover, our unusually rich data
allow us to consider additional dimensions of labor supply such as effort and work breaks.

Second, we show the importance of dynamic selection when estimating income targeting
using a novel empirical strategy. Our model shows that dynamic selection occurs under weak
conditions, likely present in most settings. Dynamic selection may also generate patterns
consistent with adaptive reference-point formation (Thakral and Tô, 2020), providing an al-
ternative (albeit not mutually exclusive) explanation to time-varying income effects patterns.
Importantly, our setting features many aspects conducive to income targeting, suggesting
that dynamic selection could also be empirically relevant elsewhere.

2Angrist et al. (2017) and Fehr and Goette (2007) are notable exceptions, but they do not employ
within-day variation in income, which is essential to identify daily income targeting under expectation-based
theories of reference-point formation (Kőszegi and Rabin, 2006).
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I. Model

A. Setup

We model a worker’s single day of work (“shift”). Each shift is divided into periods t ∈
{1, 2, ...}. At the beginning of each period, the worker decides whether to work (dt = 1) or
to end the shift (dt = 0). If they decide to work at t, they provide one unit of labor. Each
period is associated with a wage wt ∈ W , a finite set. wt may represent hourly wages, a piece
rate, or any factor affecting the pecuniary incentive to work at a given moment in time, such
as traffic conditions or weather for cab drivers. The worker observes the contemporaneous
wage but not subsequent wages and believes wages follow an independent stochastic process.3

We denote the cumulative earnings within a shift up to (and including) period t − 1 by Yt−1.
Worker preferences. If the worker stops working at the beginning of t, we normalize their

one-period utility to zero. Otherwise, their one-period utility is given by u(t, wt, Yt−1, εt),
where εt is a random variable capturing unobserved heterogeneity. It represents factors
affecting preferences for labor supply, such as temperature, sleep, noise, or fatigue, that may
vary from shift to shift and possibly within the same shift. We focus on the simpler case
where the unobserved heterogeneity is fixed within a shift, εt = ε for all t, but still may vary
across shifts for the same worker. In the end of this section, we discuss the robustness of
our results to this assumption. Importantly, the unobserved heterogeneity is essential for
the model to generate a negative relation between cumulative earnings and labor supply, as
we discuss in detail below.

We make minimal structural assumptions about the one-period utility function. First,
we assume ut < 0, capturing an increasing cost of hours worked. Second, we assume that
uw > 0, which implies that higher contemporaneous wages increase the worker’s propensity
of supplying labor. In a model without income effects, this assumption is true since the
substitution effect is always positive. In a model with daily income effects, this assumption
could in principle be violated, but to the best of our knowledge, there is no credible evidence
that the (contemporaneous) wage elasticity of labor supply is negative, even in papers de-
tecting some form of income-targeting behavior (Fehr and Goette, 2007, Chen and Sheldon,
2015, Farber, 2015).4 Third, we normalize uε > 0.

Daily income effects are captured by the derivative of the utility with respect to accumu-
lated income at t − 1, uYt−1 .5 In neoclassical labor supply models, workers consider their

3We assume independence to emphasize that our results do not come from the autocorrelation of wages.
Our results are valid if wages follow a Markov process.

4An exception is Camerer et al. (1997), but the exclusion restriction in their instrument is unlikely to
hold (Farber, 2005).

5While contemporaneous changes in income also induce income effects, those are confounded with a
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lifetime wealth when supplying labor, implying that uYt−1 ≈ 0 for any reasonable daily income
variation. In contrast, theories of daily income targeting posit that uYt−1 < 0, capturing the
psychological phenomenon of agents deriving negative (positive) utility from earning below
(above) their daily income target (Kőszegi and Rabin, 2006). Since our goal is to show that,
even without income effects, greater cumulative earnings reduce labor supply, we impose
that uYt−1 = 0. The per-period utility can then be written as u(t, wt, ε).

The worker stops working whenever the per-period utility of working at t plus the option
value of working in the next period is smaller than the utility of ending the shift. We describe
the full dynamic problem in Appendix A.

B. Testing for Daily Income Effects and Dynamic Selection Bias

Our labor supply model connects with the hazard models often used to detect income target-
ing. In papers employing hazard models, a dummy capturing the decision to quit working for
the day is regressed on cumulative daily earnings using intra-day data on labor supply and
earnings (e.g., Crawford and Meng, 2011, Chen and Sheldon, 2015, Thakral and Tô, 2020).
This regression recovers the hazard rate Pr(dt = 0|dt−1 = 1, Yt−1), capturing the probability
of ending the shift at t, conditional on having cumulative income Yt−1. When researchers
have access to wages (or other marginal financial incentives) at different moments of the day,
they can instead estimate the hazard rate conditional on any past wage wt−k. In either case,
the income-targeting hypothesis implies that the hazard rate should be increasing on Yt−1

or wt−k.
Proposition 1 is our main theoretical result.

Proposition 1. Fix a time lag k ≥ 1, and consider a pair of wages wL < wH . The bias
resulting from dynamic sample selection at t conditional on wage variation at t − k is

Bt(k, wL, wH) = Pr(dt = 0|dt−1 = 1, wt−k = wH) − Pr(dt = 0|dt−1 = 1, wt−k = wL). (1)

The following holds:

1. For any k,
Bt(k, wL, wH) ≥ 0 (2)

with strict inequality for at least k = 1.

2. If W = {wL, wH}, then Bt(k, wL, wH) is nonincreasing in k. If |W | > 2, Bt(k, wL, wH)
can be non-increasing, nondecreasing, or nonmonotonic in k.

countervailing substitution effect. Thus, we focus on income effects from previously earned income during
the shift like Farber (2005).
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Item 1 shows there is a positive relation between wages accumulated early in the shift
(given by the kth lag) and the exit likelihood at a subsequent period, even without daily
income effects. The bias is caused by dynamic (sample) selection (Diamond and Hausman,
1984). The hazard rate is, by definition, conditioned on dt−1 = 1, that is, the sample of
workers who have not dropped out before t. If a worker decides to keep working at t−k after
receiving a low wage, ε needs to be relatively high to compensate the low wage. Therefore,
those workers tend to be positively selected in the distribution of ε, in comparison to workers
who received a higher wage at t − k. Since the shock ε is persistent throughout the shift, the
selection leads to the difference in hazard rates noted in Equation (2). As they qualitatively
point to the same direction, the positive relation created by this bias is confounded with the
existence of daily income effects even in the presence of randomized wages.

Item 2 of Proposition 1 discusses the timing patterns of the dynamic selection bias. When
there are only two wages in the possible wages set, recent variations in wages cause a larger
bias in the hazard rate than older ones. With more than two wages, the pattern can go
either way.

We highlight the main intuitive force behind the pattern with two wages. Consider the
same wage differential wH − wL occurring at t − 1 and t − 2, and consider the dynamic
selection bias at period t. Workers who survived in the sample until reaching period t must
have decided to keep on working at both t − 1 and t − 2. Since at each period the cost of
effort is increasing, the threshold ε̄ necessary to continue working at t − 1 is greater than the
one at t − 2. Thus, the positive selection in the distribution of the unobserved heterogeneity
ε conditional on the wage difference at t − 1 is greater than of those facing the same wage
difference at t−2. In summary, the harder it is to keep working, the greater ε needs to be for
a worker to keep on working and the greater the bias caused by dynamic sample selection.

However, if there are more than two wages in the possible wages set, we cannot establish
the pattern’s monotonicity. Although the main intuition is still true, the possible wage paths
after the differential wH −wL occurs in period t−k may imply that all bias more recent than
t−k is equal to zero, while the bias from period t−k is positive, thus implying a nondecreasing
pattern. One can construct many examples since we impose minimal restrictions on the per-
period utility function and no restriction on W beyond finiteness. One example is when the
cross-derivative of u(.) with respect to (t, w) is negative (i.e., decreasing differences). In this
case, workers care more about wages accumulatd in earlier periods. Thus, the bias induced
by the difference in wages at t − 1 may be weaker than that in t − 2. We use this example
in Appendix A to prove the existence of nonmonotonic patterns.

Item 2 is important in light of the recent literature on reference-point formation. Thakral
and Tô (2020) find a pattern where more recent income variation is associated with stronger
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point estimates on the hazard rate, corresponding to a nonincreasing pattern in our language.
They rationalize this pattern with a model of adaptive reference-dependent preferences, in
which workers gradually adjust their reference point to account for recent variations in in-
come, reducing the weight of older variations in earnings on the hazard rate. Our model
provides a possible alternative explanation to this phenomenon.

C. Addressing Dynamic Selection

Proposition 2 outlines a sub-sampling strategy to eliminate the dynamic selection bias.

Proposition 2. Let w = min W . Let wt−1 = w and wt−2 be an arbitrary wage history up
to t − 2. The wage history wt−2 does not predict the hazard rate at t; that is,

Pr(dt = 0|dt−1 = 1, wt−1 = w, wt−2) = Pr(dt = 0|dt−1 = 1, wt−1 = w).

Proposition 2 states that any wage prior to session t − 1 has no predictive effect on the
stopping decision once we condition on wt−1 = w, solving the dynamic selection issue. If
past wages affect the stopping decision after conditioning on wt−1 = w, there is evidence in
favor of income targeting. The cost of our approach is that income effects from earnings in
the immediately previous period are not identified.

Proposition 2 has the following intuition: given the cut-off strategy to quit, each decision
to keep working only informs us that worker utility u(t, wt, ε) is above a given threshold—or
equivalently that ε is above a threshold ε(t, wt). Since ut < 0 and uw > 0, the lowest utility
received by a worker is under wage w (lowest wage possible) and at period t − 1 (last period,
when the marginal cost of effort is highest). This implies that ε(t − 1, wt−1) ≥ ε(t′, wt′) for
t′ ≤ t − 1. Thus, if the worker has decided not to quit despite having the lowest wage and
the highest marginal cost of effort, the decisions and wages before t−1 do not add additional
information about ε after conditioning on wt−1 = w.

One shortcoming of our analysis is that we assume the unobserved heterogeneity is fixed
within a shift, (εt = ε). Our results are partially robust to relaxing this assumption. Dynamic
selection still biases income effects as long as there is some persistence in εt over the shift.
This is a reasonable assumption since many factors such as heat, sleepiness, and fatigue
are likely positively autocorrelated throughout the shift. The strategy to address dynamic
selection outlined in Proposition 2 relies on how much the decision to keep working at t − 1
is predictive of the shock at t. If the unobserved heterogeneity has a low persistence, then
our strategy will not remove the bias. Note also that our strategy cannot increase the bias
from dynamic selection, so in the worst case scenario, the estimates from our strategy will
be as biased as conventional estimates.
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II. Setting and Empirical Framework

A. Setting

We use data from an RCT with 452 low-income workers who were hired on a rolling basis
for a four-week data-entry job, based in Chennai, India (Bessone et al., 2021).6 Study
participants’ main activity consisted of transcribing alphanumeric data designed to mimic
a real-world data-entry job. Participants spent, on average, two-thirds of their time on the
data-entry work and the rest completing surveys and experimental tasks. The data they
digitized were artificially generated, homogenizing the task across participants and allowing
the measurement of their accuracy. The software also allows us to objectively measure time
spent typing and in breaks, earnings, and output.7

Our setting is suitable to investigate income effects for at least three reasons. First,
participants were free to choose when to arrive at the office and when to stop working.
Workdays were classified as a “regular” or a “short” day. About half of the 28 workdays
were regular days (12–14 days), when participants were allowed to work from 9:30 am to
8:00 pm, providing flexibility in labor supply choices in the extensive (how many hours to
work) and intensive (how much effort to exert) margins. On short days (six to seven days in
total), work was restricted from 11:00 am to 5:00 pm, and participants received a monetary
incentive to comply with these working hours. As most participants complied, the extensive
margin of labor supply is effectively shut down on short days. We exclude a few days from
the analysis: days one and two were mostly for training, and a few other days included
time-consuming experimental tasks, which could restrict labor supply.

Second, there is exogenous, frequent variation in hourly earnings. The daily payments for
the data-entry work comprised 73% of participants’ average daily earnings (Rs. 343) and
were determined by two components: a piece-rate payment per unit of output (66% of data-
entry earnings) and a constant hourly rate (other earnings include payments for surveys and
for performance in experimental tasks). Each working day (shift hereafter) was divided into
sessions that lasted for roughly 30 minutes of typing time.8 Piece rates were randomized
in the session level, taking either a high or a low value with equal probability (Rs. 0.02 or
Rs. 0.005 per correct character). Participants were penalized by Rs. 0.10 per mistake. All

6Summary statistics are available in Table C2. Details about screening criteria can be found in Bessone
et al. (2021)

7Output was pre-registered as the number of correct character entries minus eight times the number of
mistakes (Bessone et al., 2021). Because the accuracy rate is above 99%, it is almost perfectly correlated
with the number of correct entries.

8After 30 minutes of typing time in a session, the session would switch upon the worker submitting a
data field. See more details in Figure C2.
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payments accrued in a given day were carried out at the end of the same day.
Third, piece rates in the current session were easily observable, allowing workers to target

income. In most shifts, the piece rate was always visible in the corner of their screen (Figure
C2) and were associated with distinct colors. The participants’ screen also blinked by the end
of a session, indicating that the piece rate might have changed.9 The participants produced
19% more under high piece rates, showing that they noticed the piece rates. A drawback
is that participants could not track their exact cumulative earnings. However, earnings are
determined by total output, typing time, and the current piece rate, which are all observable
in each period. We show in Table C3 that piece rates account for most of the variance in
total earnings.

B. Empirical Framework

We estimate the relation between labor supply and cumulative income with the regression

yidt =
4∑

j=0
βjHighidt−j + γXidt + νidt, (3)

where yidt is one of the following labor supply measures for participant i at date d and
session t: output, minutes spent in work breaks, and a dummy indicating the decision to
stop at t. The variables Highidt−j are dummies indicating whether session t − j had a high
piece rate. Xidt is a vector of covariates including participant, day in study, session, and
date fixed effects. Our empirical specification closely follows those used to estimate daily
income effects in other income-targeting settings (Farber, 2005, 2008, 2015, Crawford and
Meng, 2011, Chen and Sheldon, 2015, Hammarlund, 2018, Thakral and Tô, 2020). While
they focus solely on the the decision to stop working, we can explore additional margins of
labor supply.

The main coefficients of interest are βj (for j > 0). They capture the impact of previous
wage variation on labor supply. Assuming that wages are exogenous, that is, E[Highid·νidt] =
0, the neoclassical model predicts that βj = 0 for any j > 0. Under income targeting, positive
income shocks should decrease subsequent labor supply, implying that βj < 0 for j > 0 when
the outcome is output and βj > 0 for breaks and the stopping decision. We also include
the contemporaneous piece rate, with the associated coefficient β0 capturing the price effect
of high piece rates on labor supply. Because β0 conflates substitution and potential income
effects, β0 > 0 does not contradict the income-targeting hypothesis.

9In some of the shifts, the piece rates were less salient, only being available for a few seconds after they
changed (Figure C2, panel b). The results are similar in those days (Table C6).
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Dynamic selection implies that E[Highid · νidt] ̸= 0 even if wages are randomly assigned.
In that case, estimates of income effects given by βj will be downward biased. Controlling
for observables Xidt including individual, date, day in study, and session fixed effects may
help with dynamic selection, although as discussed in Appendix Section B and elsewhere
(Kyriazidou, 1997), it may not entirely solve the dynamic selection bias. We still add controls
to our analysis to increase the precision of our estimates.

We address dynamic selection in three ways. First, we employ the solution proposed
in Proposition 2. Second, we restrict the analysis to short days. Because the extensive
margin of labor supply–and therefore dynamic selection—is shut down, we look for income
targeting in the intensive margin. Third, we explore in the appendix an exogenous variation
in earnings, which cannot trigger dynamic selection. Together, these strategies allow us to
estimate income effects without dynamic selection.

Estimating daily income effects presents other well-known econometric challenges. First,
papers in this literature often rely on nonexperimental income variation. If cumulative wages
are affected by supply shocks, estimates of income effects would be negatively biased. Second,
labor supply decisions depend on the continuation value of working, which in turn depends on
future expectations of wages. If wages are autocorrelated, the unobserved continuation value
potentially confounds the estimation of income effects. Our paper bypasses these issues by
randomly assigning wages throughout the shift. Third, higher past wages may induce more
fatigue if workers exert more effort when wages are higher. If fatigue affects labor supply,
cumulative income would be negatively related to labor supply. Therefore, our results from
the piece-rate variation, as well as the results in the literature, should be interpreted as an
upper bound of the magnitude of the income effects.

III. Results

A. Income Effect and Dynamic Selection

Dynamic selection only biases estimates of income effects when (i) the hazard rate is decreas-
ing in contemporaneous wages and (ii) there is relevant unobserved heterogeneity in labor
supply preferences. Figure 1 shows that (i) holds in our sample. In the beginning of the
shift, there is very little quitting, so there is no difference in the hazard rate conditional on
high (red) or low piece rates (blue). However, as the shift progresses, there are significant
differences in quitting probabilities by piece rates. At 5.4 hours into the shift, the difference
is already significant at the 5% level. By the end of the shift, a 20 percentage point (pp)
gap between the hazard rate conditional on high and low wages appears. While condition
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(ii) is not testable, it is hard to imagine a setting in which we can account for all heterogene-
ity shaping the labor supply decision, even when we add worker fixed effects. In the likely
event that the differential attrition by piece rate is related to the participants’ unobserved
heterogeneity as in our model, the conventional estimates of income effects would suffer from
dynamic selection bias.

In our setting, the estimates of the conventional hazard model indicate the presence of
income targeting. Table 1 (columns 1–3) shows that when workers have discretion to choose
their working hours and dynamic selection is not addressed, there are patterns consistent
with income targeting for our three measures of labor supply: output, which falls by 98 units
(6.6%, p < 0.01 ); (ii) pauses, which increase by 0.88 minutes (47%, p < 0.01); and (iii) the
hazard rate, which increases by 4.3 pp (30.7%, p < 0.01). These estimates, which we call the
aggregate effect, correspond to the sum of the first four piece-rate lags. Rows 2–5 confirm
that most lags are statistically different than zero and all income effects are still significant
(albeit smaller) if we exclude the first lag (row 2).

However, these results are an artifact of dynamic selection. In columns 4–6, we estimate
the empirical model restricting the sample to workers who received a low piece rate in the
immediately previous session. As discussed in Proposition 2, this sub-sample is not affected
by dynamic selection. So, if income effects persisted, we would have credible evidence of
income targeting; they did not. In this sub-sample, we find that the aggregate income effects
(row 2) are close to zero and insignificant, and they even flip signs for output and the hazard
rate. These results are not driven by excluding the first lag from the overall effect, which is
required by Proposition 2. As discussed above, the conventional estimates still point toward
income targeting, even excluding the first lag.

Even though this strategy halves the sample size, we are well powered to reject the null.
For output, for example, we are powered to detect effects as small as 33.7 units (2.2%).
Moreover, conditioning on receiving a high piece rate in the previous session, instead of
conditioning on receiving a low one, yields even stronger evidence of income targeting in
spite of both sub-samples having roughly the same size (Table C4). This is consistent with
our model since dynamic selection should still affect the sample that just received a high
piece rate.

Two additional results corroborate the absence of income targeting when dynamic selection
is not a concern. First, we see no evidence of income targeting in the sample of short days
(columns 7–9). On these days, participants are restricted to stop working at 5:00 pm, which
effectively shuts down the extensive margin of labor supply. Importantly, workers could
still adjust labor supply via effort provision or work breaks, allowing us to test for income
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targeting in both dimensions.10 Nevertheless, the overall effects are small and statistically
insignificant. There is a 14 second increase in work breaks, but it is offset by a tantamount
increase in lag 4. Second, in Appendix Section C, we show that variation in payments
for a different study task do not affect any dimension of labor supply in the rest of the
day. Importantly, participants only learned about the amount they would be paid moments
before the task. Thus, they could not end the shift in response to their payment level before
or during the task, which could lead to dynamic selection.

After addressing dynamic selection, we find no evidence of income targeting. But is our
setting suitable for income targeting? First, why would workers engage in income targeting
in the first place? One possible reason is that participants in our sample are present biased on
average (Bessone et al., 2021). This presents a rationale for income targeting as a way to deal
with self-control issues (Read et al., 1999, Koch and Nafziger, 2016). Second, participants
could be unable to track income throughout the day. However, as detailed in Section A,
the participants could infer their accumulated income via piece rates, which explains most
of the variation in income for a person. Third, perhaps income targeting evolves over time
when participants develop more experience with the setting. This is unlikely since we see no
differences in results when looking only at the last week of work (Table C7). Moreover, Farber
(2015) finds that more experienced drivers are less likely to engage in income targeting.

B. Implication to the Literature

Dynamic selection may bias estimates of income effects from hazard models under two condi-
tions that are likely present in most settings. First, workers must be heterogeneous in factors
that are nonobservable and vary from shift to shift. It is hard to imagine a worker not subject
to unobserved factors such as sleep, health, eating, or fatigue affecting the marginal cost of
labor across shifts. Unobserved heterogeneity is likely to be an issue as long as the econo-
metrician cannot control entirely for it. Second, the effect of current wages on the hazard
rate needs to be positive. This condition holds under the neoclassical model and could hold
even in the presence of income targeting (Kőszegi and Rabin, 2006). This is the case in our
setting, for ride-share drivers, who are less likely to stop working during price surges (Chen
and Sheldon, 2015), and bike messengers (Fehr and Goette, 2007), for example.

Dynamic selection might be an issue even in settings without an explicit instantaneous
wage. In such settings, workers may still form beliefs about the marginal financial incentive
to keep working. For example, cab drivers may use cues such as traffic or special events in the
city that affect demand for rides to form beliefs about their instantaneous financial incentive

10In expectation-based models of income targeting, workers should target income even on short days since
the target should be adjusted down to account for less working hours (Kőszegi and Rabin, 2006).
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to keep working. As evidence that they do, Farber (2015) estimates the instantaneous wage
at each minute of the day for NYC cab drivers, which reveals a positive wage elasticity of
labor. Similarly, Giné et al. (2016) find that fishermen in India are more likely to work when
predicted demand is high, even though they cannot directly observe the financial incentive
to work. Replacing known wage rates by expected ones should not change the conclusions
of the model since dynamic selection occurs as longs as workers supply more labor when
expected instantaneous incentives are high.

Although it is likely that most income-targeting estimates in the literature present some
degree of dynamic selection, the magnitude of the bias is unclear. In our setting, marginal
incentives vary substantially and are very salient, which should contribute to the bias being
larger than elsewhere. Since we cannot apply our strategy to separate income effects from
dynamic selection for NYC cab drivers or in other settings, we investigate how our results
compare with prominent papers in the literature. We re-estimate columns 3 and 6 of Table
1 with a specification directly comparable to Farber (2015) and Thakral and Tô (2020). We
show in Figure C2 that a 10% increase in cumulative earnings early in the shift is associated
with an increase of roughly 9.5% in the stopping probability later in the day. In comparison,
Farber (2015) find a 9% increase when focusing on drivers working in daytime shifts, and
Thakral and Tô (2020) report a 3.3% increase in a sample that includes day and nighttime
shifts. While in our setting these effects are entirely driven by dynamic selection, the size of
dynamic selection bias might be smaller elsewhere.

Our results also speak to the literature on reference-point formation. In a seminal contri-
bution, Thakral and Tô (2020) show that cab drivers’ income effects are more pronounced for
recent earnings than for earlier ones. They rationalize this nonfungibility of income shocks
over time with a theory of adaptive reference-point formation, in which earnings accumu-
lated early in the shift help form the worker’s income target. Dynamic selection provides an
alternative (albeit nonmutually exclusive) explanation for their results (item 2 of Proposition
1). Our setting presents the same nonfungibility patterns (Figure 2). Not accounting for
dynamic selection (left-hand graphs), income effects are positive for recent piece-rate lags
but decrease over time for all measures of labor supply. However, when we separate the
sample into low and high piece rates in the previous sessions, it is clear that dynamic selec-
tion is responsible for the nonfungibility pattern. When we use the low piece-rate sample
(right-hand graphs, orange series), the pattern disappears. The nonfungibility pattern comes
exclusively from the high piece-rate series (blue), which does not address dynamic selection.
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IV. Conclusion

Our theoretical and empirical results suggest that studies considering daily income effects
should investigate the empirical relevance of dynamic selection. In our setting, disregarding
this bias would change the interpretation of the results. We propose two different strategies
to deal with this issue. First, we use a model-based strategy to eliminate dynamic selection
that may apply elsewhere. Second, researchers could investigate the presence of income
effects in settings without an extensive margin of labor supply. Instead of focusing on the
hazard rate, they could study income effects in other margins of labor supply, such as effort
provision.

The solutions we propose are not feasible in every setting. When instantaneous wages are
not observable, such as for a cab driver, the methods do not apply directly. But they might be
used in the context of ride-sharing drivers, in which the researchers may observe or possibly
even manipulate the trip multiplier for some drivers. Alternatively, future research could
deal with dynamic selection using dynamic discrete choice structural models that incorporate
dynamic selection explicitly (Abbring and Heckman, 2007).
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Figure 1: Hazard rate conditional on high versus low piece rate

●● ●● ●● ●● ●● ●
● ●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0

0.2

0.4

0.6

0.8

0.7 1.3 2.2 3.1 4 4.7 5.4 6 6.6 7.1 7.6 8 8.5 8.9 9.3
Hours working (avg)

H
az

ar
d 

ra
te

●

●

High Rate
Low Rate

Notes: This figure presents the hazard rate (average probability of quitting) at different
moments of the day (sessions t). We show the hazard rate conditional on high (red) and
low (blue) piece rates. The whisker bars represent 95% confidence intervals. We show in the
x-axis the average number of hours into the shift by the end of each session.
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Figure 2: Income effects: Role of timing
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(a) Effects of lagged piece rates on output - full
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(c) Effects of lagged piece rates on pauses - full
sample
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(d) Effects of lagged piece rates on pauses - sub-
samples
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(e) Effects of lagged piece rates on probability of
exit - full sample
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Notes: This figure presents the effects of nine piece rate lags on output, pauses, and the hazard rate. The
specification follows Equation (3), but adds more lags. Panels on the left consider the whole sample, while
panels on the right consider the sub-samples that received a high/low piece rate on the previous section. The
bars represent 95% confidence intervals.
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Table 1: Effect of piece-rate variation on labor supply

Regular days Regular, conditional on wt−1 = low Short days
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Output Work Breaks Quit Output Work Breaks Quit Output Work Breaks Quit

Total effect: lags 1-4 -98.45 0.88 0.04 19.34 0.04 -0.01
(12.31) (0.19) (0.01) (19.19) (0.19) (0.01)
[0.00] [0.00] [0.00] [0.31] [0.82] [0.38]

Total effect: lags 2-4 -42.16 0.51 0.01 2.63 0.03 -0.01 10.18 -0.18 -0.00
(9.49) (0.14) (0.01) (12.05) (0.11) (0.01) (16.29) (0.15) (0.01)
[0.00] [0.00] [0.05] [0.83] [0.77] [0.14] [0.53] [0.23] [0.99]

High lag 1 -56.29 0.367 0.031 9.17 0.223 -0.011
(6.17) (0.083) (0.004) (9.54) (0.076) (0.006)
[0.00] [0.00] [0.00] [0.34] [0.00] [0.08]

High lag 2 -18.22 0.219 0.008 15.47 -0.068 -0.005 -1.17 -0.007 0.005
(5.12) (0.065) (0.003) (6.41) (0.075) (0.005) (9.08) (0.079) (0.006)
[0.00] [0.00] [0.01] [0.02] [0.36] [0.28] [0.90] [0.93] [0.44]

High lag 3 -11.45 0.127 0.000 -6.98 0.021 -0.001 -3.23 0.049 0.002
(4.62) (0.068) (0.003) (6.28) (0.070) (0.004) (8.17) (0.082) (0.006)
[0.01] [0.06] [0.94] [0.27] [0.76] [0.79] [0.69] [0.55] [0.71]

High lag 4 -12.48 0.167 0.003 -5.85 0.081 -0.006 14.58 -0.223 -0.007
(5.68) (0.069) (0.003) (6.16) (0.066) (0.004) (9.02) (0.070) (0.006)
[0.03] [0.02] [0.31] [0.34] [0.23] [0.15] [0.11] [0.00] [0.24]

High 284.71 -1.060 -0.083 261.39 -0.842 -0.077 156.60 -0.648 -0.004
(12.13) (0.100) (0.004) (12.23) (0.090) (0.005) (12.11) (0.089) (0.007)
[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.57]

Excluded Group Mean 1470.75 1.87 0.14 1512.75 1.70 0.11 1460.20 1.64 0.16
Excluded Group SD 941.48 6.24 0.34 925.67 5.00 0.31 922.50 4.57 0.37
Observations 33716 33716 33716 16181 16181 16181 9628 9628 9628
Participants 452 452 452 452 452 452 452 452 452

Notes: This table presents estimates of Equation (3) for three labor supply outcomes: output, work breaks, and a dummy indicating
the decision to quit for the day. Columns 1-6 restrict the sample to regular days, when participants had full discretion to choose when
to quit (see Section A). In columns 1-3 we use the entire sample, while in columns 4-6 we restrict the sample to sessions for which the
previous session had a Low piece rate, addressing the dynamic selection (see Proposition 2). Columns 7 to 9 restrict the sample to
short days, when participants received monetary incentives to quit at exactly 5 PM, effectively shutting down the extensive margin
of labor supply, which also addresses dynamic selection. “Excluded group” stands for the sample where all piece-rate indicators
included in the regression are equal to zero. Row 1 computes the sum of the four lags, while row 2 considers the effect of lags 2-4
to ensure comparability between columns 4-6 and the others. Errors clustered at the worker-level are displayed in parenthesis, with
the associated p-values in brackets.
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Online Appendix

A. Proofs

Under the assumptions we made, the optimal stopping rule for the agent follows a simple monotonic strategy,
which we formalize in Lemmas 1 and 2.

Lemma 1. For every wage w and time period t, there exists a unique value ε(t, w) such that the agent keeps
working at t (i.e., d∗(t, w, ε) = 1) iff ε ≥ ε(t, w). Moreover, ε(t, w) is increasing on t and decreasing on w.

Proof :
Let V e(t + 1, ε) = E [V (t + 1, wt+1, ε)] and U(t, w, ε) ≡ u(t, wt, ε) + V e(t + 1, ε). The agent chooses

d∗(t, w, ε) = 1 iff U(t, w, ε) ≥ 0.
By assumption, uε(t, w, ε) > 0 for any (t, w). This implies that V e(t + 1, ε) is also (weakly) increasing

on ε, since any agent facing two different values of ε can always choose exactly the same stopping-decision
path and receive a higher inter-temporal utility under the higher value of ε. Thus, U(t, w, ε) is increasing on
ε. This implies that there is at most one point ε(t, w) such that U(t, w, ε(t, w)) = 0. We know such a point
exist because of technical assumption 1, implying that U(t, w, ε) ≥ 0 iff ε ≥ ε(t, w).

We now prove the comparative static results. Take two wages w′ > w. We have that

U(t, w, ε(t, w)) ≡ u(t, w, ε(t, w)) + V e(t + 1, ε(t, w)) = 0 (4)

U(t, w′, ε(t, w′)) ≡ u(t, w′, ε(t, w′)) + V e(t + 1, ε(t, w′)) = 0 (5)

Because uw > 0, u(t, w′, ε) > u(t, w, ε) for any t, ε. Since, U(t, w, ε(t, w)) = U(t, w′, ε(t, w′)) and uε > 0, this
means that ε(t, w′) < ε(t, w).

Take now two time periods such that t′ > t. Again,

U(t, w, ε(t, w)) ≡ u(t, w, ε(t, w)) + V e(t + 1, ε(t, w)) = 0 (6)

U(t′, w, ε(t′, w)) ≡ u(t′, w, ε(t′, w)) + V e(t′ + 1, ε(t′, w)) = 0 (7)

We have that both ut(t, w, ε) < 0 and V e
t (t, ε) ≤ 0 for any t, w, ε, implying that U(t′, w, ε) < U(t, w, ε) for any

ε. Since, (i) U(t, w, ε(t, w)) = U(t′, w, ε(t′, w)) and (ii) Uε ≥ 0, it must be the case that ε(t, w) < ε(t′, w).

Lemma 2. Take a wage history wt = (w1, ..., wt) and define

ε̂(wt) ≡ max
t′∈{1,2,...,t}

{ε(t′, wt′)} (8)

where ε(t′, wt′) is defined as in Lemma 1.
The survival rate at t + 1 is given by

E
[
dt+1|wt, dt = 1

]
= E

[
dt+1|ε ≥ ε̂(wt)

]
(9)

Proof
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For each t′ ≤ t we observe wt′ and dt′ = 1. This is equivalent to observing U(t′, wt′ , ε) > 0 ⇐⇒ ε >

ε(t′, wt′). Aggregating the wage and stopping decision at each t′ ≤ t yields ε ≥ ε̂(wt) for all t.

Proof of Proposition 1.
We prove the results for E

[
dt|wt−1, dt−1 = 1

]
= 1 − Pr

[
dt = 0|wt−1, dt−1 = 1

]
. From now on we may

omit the conditional dt−1 = 1 to ease the notation, but all the expectations below are taken conditioning on
it.

Item 1, existence of dynamic selection bias: from Lemma 2, E [dt|wt, dt−1 = 1] = E [dt|ε ≥ ε̂(wt)].
Note first that

E [dt|ε ≥ y] ≥ E [dt|ε ≥ x] ⇐⇒ y ≥ x (10)

since the random variable ε|ε > y first-order stochastically dominate (FOSD) ε|ε > x for y > x, and
dt = 1 {U(t, w, ε) ≥ 0} is a non-decreasing function of ε. Denote a wage history up to t − 1 not including
the period t − k as wt

−(t−k). Then, we can decompose the expectation of dt in terms of all possible wage
histories:

E [dt|wt−k = w] =
∑

wt
−(t−k)

E
[
dt|wt−k = w, wt

−(t−k)

]
· Pr

(
wt

−(t−k)

)
(11)

We can then write Bt(k, wh, wl) = E [dt|wt−k = wl] − E [dt|wt−k = wh] as

Bt(k, wh, wl) =
∑

wt
−(t−k)

Pr
(

wt
−(t−k)

)
·
(
E

[
dt|wt−k = wl, wt

−(t−k)

]
− E

[
dt|wt−k = wh, wt

−(t−k)

])
(12)

Note that

E
[
dt|wt−k = wl, wt

−(t−k)

]
− E

[
dt|wt−k = wh, wt

−(t−k)

]
=

= E
[
dt|ε > max

{
ε(t − k, wl), ε̂

(
wt

−(t−k)

)}]
− E

[
dt|ε > max

{
ε(t − k, wh), ε̂

(
wt

−(t−k)

)}]
≥ 0

This expression is always non-negative because

max
{

ε(t − k, wl), ε̂
(

wt
−(t−k)

)}
≥ max

{
ε(t − k, wh), ε̂

(
wt

−(t−k)

)}
,

since Lemma 1 shows that ε(t−k, w) is decreasing on w, and because of inequality 10. Therefore E [dt|wt−k = wl] ≥
E [dt|wt−k = wh]. When k = 1, this inequality is strict. To see that, we just need to show that one of the
terms in 12 is strictly positive. To do that, we fix a wage history wt−2 such that wt′ = wh for each t′. Then
by Lemma 1

ε(t − 1, wl) > ε(t − 1, wh) > ε̂(wt−2)

Implying that

E
[
dt|wt−1 = wl, wt−2]

= E [dt|ε > ε(t − 1, wl)] > E [dt|ε > ε(t − 1, wh)] = E
[
dt|wt−1 = wh, wt−2]

The strict inequality is guaranteed because we know that for ε at the neighborhood of ε(t − 1, wh), dt = 0,
since ut < 0. Thus, E [dt|wt−1 = wl] > E [dt|wt−1 = wh].
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Item 2, time pattern of the dynamic selection bias with two wages: Since we only consider two
wages, we denote

Bt(k) ≡ Bt(k, wL, wH) = E [dt|wt−k = wL] − E [dt|wt−k = wH ]

Consider the following partition of the wage history at t′ = t − 1, ..., t − k + 1:

E = {(wt−1, wt−2, ..., wt−k+1) : wt′ = wH for all t′ = t − 1, ..., t − k + 1}

Ec = {(wt−1, wt−2, ..., wt−k+1) : wt′ = wL for some t′ = t − 1, ..., t − k + 1}

Note that the event E is a set with only one wage history where all wages are wH from periods t − 1 to
period t − k + 1 and Ec is the complement of E, i.e., any wage history in the same periods that involves at
least one wage wL. Using the law of iterated expectations, we can express Bt(k) as

Bt(k) = Pr (E) · (E [dt|wt−k = wL, E] − E [dt|wt−k = wH , E])

+ Pr (Ec) · (E [dt|wt−k = wL, Ec] − E [dt|wt−k = wH , Ec])

We first show that E [Bt(k)|Ec] = E [dt|wt−k = wL, Ec] − E [dt|wt−k = wH , Ec] = 0. Note that we can
re-write

E [Bt(k)|Ec] = E [dt|wt−k = wL, Ec] − E [dt|wt−k = wH , Ec]

=
∑

wt
−(t−k)∈Ec

Pr
(

wt
−(t−k)|E

c
)

·
(
E

[
dt|wt−k = wl, wt

−(t−k)

]
− E

[
dt|wt−k = wh, wt

−(t−k)

])

By definition, wt
−(t−k) ∈ Ec implies that wt′ = wL for some t′ > t − k. Then ε(t′, wL) > ε(t − k, wL) >

ε(t − k, wH), so E
[
dt|wt−k = wL, wt

−(t−k)

]
= E

[
dt|wt−k = wH , wt

−(t−k)

]
(Lemma 2). Then, we conclude

that for any wt
−(t−k) ∈ Ec,

E
[
dt|wt−k = wl, wt

−(t−k)

]
− E

[
dt|wt−k = wh, wt

−(t−k)

]
= 0

implying that E [Bt(k)|Ec] = 0. Therefore, we have that

Bt(k) = Pr (E) · (E [dt|wt−k = wL, E] − E [dt|wt−k = wH , E])

Because we assume that wt is iid, then Pr(wt = wH) = pH for every t and Pr(E) = pk−1
H

11. We then have
that

Bt(k) = pk−1
H · (E [dt|wt−k = wL, wt−k+1 = wH , ..., wt−1 = wH ]

− E [dt|wt−k = wH , wt−k+1 = wH , ..., wt−1 = wH ])

= pk−1
H · (E [dt|ε > max{ε(t − k, wL), ε(t − 1, wH)}] − E [dt|ε(t − 1, wH)])

Note that if ε(t − k, wL) ≤ ε(t − 1, wH), then the two expectations cancel out and Bt(k) = 0. However, if

11The exponent is k − 1 because the wage history goes from t − k + 1 to t − 1
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ε(t − k, wL) > ε(t − 1, wH), then

E [dt|ε > max{ε(t − k, wL), ε(t − 1, wH)}] − E [dt|ε(t − 1, wH)] > 0

So, we can express

Bt(k) = 1[ε(t−k,wL)>ε(t−1,wH )] · pk−1
H · (E [dt|ε > ε(t − k, wL)] − E [dt|ε > ε(t − 1, wH)])

Analogously, for k + 1, the bias will be

Bt(k + 1) = 1[ε(t−k−1,wL)>ε(t−1,wH )] · pk
H · (E [dt|ε > ε(t − k − 1, wL)] − E [dt|ε > ε(t − 1, wH)])

Note that

1[ε(t−k,wL)>ε(t,wH )] ≥ 1[ε(t−k−1,wL)>ε(t,wH )]

Pr(wt′ = wH)k−1 > Pr(wt′ = wH)k

E [dt|ε > ε(t − k, wL)] > E [dt|ε > ε(t − k − 1, wL)]

The first and third inequalities come from the fact that ε(t, wL) is increasing in t (Lemma 1). These three
inequalities imply that Bt(k, wL, wH) ≥ Bt(k + 1, wL, wH).

Item 2, time pattern of the dynamic selection bias with three or more wages: We now show
that, with three or more wages, it is possible for the bias at t − k − 1 to be larger than the bias at t − k. We
proceed by example and make a series of assumptions to impose the necessary structure for the result.

We iterate the value function as follows: at T , the last possible period of a shift, we set VT = 0 as agents
are forced to stop. We then proceed by solving the value function backwards, considering the future value
as a expected value over the possible stochastic wages. To take expectations over the possible future wages,
we simulate 1, 000, 000 wage paths.

Before placing a specific structure on the utility function, consider the general format for the bias at times
t − k and t − k − 1 (all expectations are conditional on dt−1 = 1:

Bt(k, wH , wL) = E[dt|wt−k = wL] − E[dt|wt−k = wH ]

Bt(k + 1, wH , wL) = E[dt|wt−k−1 = wL] − E[dt|wt−k−1 = wH ]

Taking the difference between these bias, we have:

∆B(wH , wL) := (E[dt|wt−k = wL] − E[dt|wt−k = wH ]) − (E[dt|wt−k−1 = wL] − E[dt|wt−k−1 = wH ]) (13)

As we have shown, with two wages, ∆B(wH , wL) ≥ 0. With three or more wages, there are possible future
paths of wages with wages above wH and wL, and these paths can act as to eliminate the bias stemming
from t − k, while not necessarily eliminating those from t − k − 1. However, the likelihood of such an event
depends on specific formats for the utility function. Intuitively, wages closer to t must be less relevant for
the labor supply decisions, as to eliminate the bias arising from wage differences at periods closer to t.

Based on this observation, we assume the following format for the utility function, common to all workers:

u(w, t, ε) = 4w − 0.2(t − 1)1.01 − 0.49(w(t − 1))0.75 + εt

24



There are two key ingredients in this utility function. First, the cost of effort function (0.2(t − 1)1.01) is only
mildly convex, which translates into a smaller decay of bias. If the cost function is more strongly convex, the
immediate previous time period has a much larger cost than those in the past, and thus selection is going to
come almost entirely from t−1. Second, the interaction term −w(t−1) guarantees that, as the shift advances,
wages are less relevant to utility. This is necessary given our previous observation that, for ∆B(wH , wL) to
be negative, the recent lag must be small - thus, wages must be more important to the stopping decision
farther away in time. Third, the interaction term is concave, which follows a similar reasoning to the mild
convexity of the cost of effort.

We assume that there are three wage levels, w = {0.2, 0.5, 0.8}, named wL, wM , wH , respectively, and that
there are at most T = 20 periods in a given shift. Then, assume that ε varies only at the shift-level (i.e.,
εt = ε), and that ε ∼ U [0, 2].

Table A1 presents the bias B(k, wj , wi), for period t = 12, for all three possible wage combinations and
k ∈ [1, 4].

Table A1: Simulated dynamic selection bias, at t = 12, for four lags

Lag (k) B(k, wH , wM) B(k, wH , wL) B(k, wM , wL)

1 0.111 0.146 0.035
2 0.023 0.095 0.072
3 0.003 0.0127 0.009
4 -0.002 -0.001 0.001

Thus, we can see that the bias from wages wM to wL at lag k = 2 is larger than the bias from k = 1. This
proves the possibility of greater bias for latter lags.

Proof of Proposition 2
If wt−1 = w, then by lemma 1 ε(t − 1, w) = ε̂(wt−1), since ε(t, w) is increasing in t and decreasing in w.

By lemma 2, this implies that

E
[
dt|dt−1 = 1, wt−1 = w, wt−2]

= E [dt|ε > ε(t − 1, w)]

for any wt−2.
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B. Additional Results

A. Additional Details Model
Dynamic Model. At t, the agent chooses dt = (dt, dt+1, ...) to maximize their intertemporal utility

U(dt, t, ε) = dtu(t, wt, ε) +
∞∑

t′=t+1
E [dt′(wt′ , ε)u(t′, wt′ , ε)]

where dt = 0 is absorbing (upon quitting, the current shift is ended). The agent’s problem is equivalent to
the Bellman equation

V (t, wt, ε) = max
dt∈{0,1}

{dtu(t, wt, ε) + dtE [V (t + 1, wt+1, ε)]} (14)

implying that they stops working at t iff

u(t, wt, ε) + E [V (t + 1, wt+1, ε)] < 0 (15)

Technical Assumption. To avoid dealing with corner solutions, we assume that for any t and w, ∃ ε̃ such
that u(t, w, ε̃) = 0. This is equivalent to assuming probabilities of stopping strictly between 0 and 1, making
the algebra less cumbersome without affecting results qualitatively.

B. Controlling Dynamic Selection by Fixed Effects
Instead of using the approach proposed in Proposition 2, we could estimate the hazard model controlling
for fixed effects. If the unobserved heterogeneity varies across shifts for a given worker, then we would need
to add fixed effects in the shift-worker level. Such high-dimensional control would lead to the incidental
parameter problem (Lancaster, 2000). This problem could be avoided if the hazard rate is linear function
of the error term, but this gives rise to another issue. Since a linear model is unlikely to represent well a
binary outcome variable, model mispecification could be severe, and fixed effects would not deal with the
unobserved heterogeneity.

We assess how shift-level fixed effects might help our results in two ways. First, we estimate the results
in Table 1 using shift-worker FEs, and they do not solve the issue of dynamic selection in our setting. Table
C8 shows that the difference in total income effect between the standard estimates (columns 1-3) are very
similar to the estimates controlling for participant-day fixed effects (columns 4-6) for output, work breaks,
and stopping decision.

Second, we conduct a simulation exercise that shows that a linear fixed effect model does not help with
dynamic selection while the solution outlines at Proposition 2 does. We simulate a sample of 4520 workers
(we use a sample 10 times higher than our own to minimize simulation noise) deciding when to stop working
based on the model outlined in Section I. For each worker-day pair, we draw a heterogeneity value ϵ from a
[0, 1]-uniform distribution and a wage path. We assume that the work day is divided in 20 sessions, so each
wage path has 20 elements. We assume the instantaneous utility function is separable:

u(t, w, ϵ) = ϕw − β(t − 1) + ϵ
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and we set ϕ = 5 and β = 0.1. Just like in our setting we assume there are only 2 different wages and set
the low wage to 0.5 and the high wage to 2, also replicating the ratio between high and low wages in our
setting.

With this model, we simulate a data-set in the incentive-session level that shows for each worker-day-
session, what was the piece rate and whether the worker decided to keep working (yids = 1) or if the worker
stopped working (yids = 0).

We estimate three variants of equation 3 using the simulate data set. First, we estimate a model with
no controls and full sample. This is supposed to be the benchmark result, which mimics the estimation
procedure commonly used in the literature.12 Second, we estimate the same model, still with the full sample,
but adding participant-session fixed effects. This model controls for fixed-effects in the same level as the
unobserved heterogeneity varies, which perhaps indicate it could suffice to deal with dynamic selection.
Third, we estimate the equation without controls, but using only the sample of sessions in which the first lag
of the piece rate is the low piece rate. This is our proposed solution to the dynamic selection issue, outlined
in Proposition 2.

The simulation exercise (Figure B1) has three takeaways. First, the benchmark estimates presents a
positive relationship between past wages and the probability of stopping the shift. Moreover, this relationship
is stronger for more recent lags of piece rates. This is precisely the prediction of the income targeting model
with adaptive reference-point formation Thakral and Tô (2020). Note however that in this simulation, this
is coming exclusively from dynamic selection. Second, we show that including participant-day fixed effects
do not change the income effects estimates qualitatively. Thus, adding fixed effects in this example do not
help with dynamic selection. Third, the solution outlined in Proposition 2 completely solves the dynamic
selection issue. In the sub-sample not affected by dynamic selection, all lags of piece rate are very close to
zero and not significant.13

12Note that in the literature, researchers often add a series of controls, including participant fixed effects.
We do not here for simplicity, since in our simulated data we rule out correlations between participant-level
covariates and the outcome variable by design.

13Note that with our proposed solution, we cannot estimate the first piece-rate lag. That is why we do
not add it to the graph.
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Figure B1: Simulation of participant-day fixed effects versus Proposition 2 solution to dy-
namic selection
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Notes: This figure shows the estimates from three income effect estimators using data simulated from
our model in Section I. Each series is a variation of equation 3 using the simulate data set: The red (circle)
series use estimates from a model with no controls and full sample. This is the benchmark result, which
mimics the estimation procedure commonly used in the literature. The green series (triangle), stills uses the
full sample, but controls for participant-session fixed effects. The blue (square) series, shows estimates of
the equation without controls, but using only the sample of sessions in which the first lag of the piece rate
is the low piece rate. This is our proposed solution to the dynamic selection issue, outlined in Proposition
2. Note that we cannot estimate the first piece-rate lag in the last series. The bars represent 1% confidence
intervals.
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C. Monetary Windfall
We corroborate the results from the previous subsection using an exogenous shock to income that cannot
generate dynamic selection.

The participants performed two cognitive tasks each day, receiving daily payments for their performance.
Together, performing both tasks took around 20 minutes In each day, each of these tasks had a 50% proba-
bility of having their payments doubled, which was observed by the participants. Right before starting the
cognitive task (see Section A), participants were told whether their payment would be doubled. Since par-
ticipants could not leave during the task, they could not adjust their decision to stop working as a response
to the payment before or during the task, disallowing dynamic selection. However, they could adjust labor
supply afterward. This represents a positive income shock of about 6% to their cumulative daily income per
payment doubled, bringing them closer to their daily income target.

We estimate the regression
yid = β DoublePayid + γXid + εid (16)

where i represents a participant and d a day. yid captures one of the following margins of labor supply: effort,
work breaks, or the time in hours a participant decides to quit working. The exogenous variation in income
is captured by the dummy DoublePayid, which indicates whether the participant received a High payment
on either of the two cognitive tasks. Xidt is a vector of covariates capturing participant, date, day in study,
and window fixed effects.

Table C5 shows no evidence of income targeting. The effect on output (col. 1), work breaks (col. 2), and
the time participants stopped working (col. 3) are small and insignificant, in spite of high detection power.14

The sign for work breaks is actually flipped, suggesting fewer breaks after a doubled payment.
These results complement the findings of Dupas et al. (2020) and Andersen et al. (2018). They also find

no evidence of income effects using random variation in one-time payments. They use a monetary windfall
as an income shifter. In contrast, the income variation from cognitive tasks in our setting is part of the
participants’ day-to-day work. This is important because workers might use a separate mental account
for unearned, unexpected monetary windfalls (Henderson and Peterson, 1992). In that case, the monetary
windfall may not count for achieving the income target. Our paper addresses this concern and corroborates
their findings of no daily income effects.

14We could reject changes in output of 3%, in work breaks of 42 seconds, and in stopping time of 3.6
minutes with 95% confidence.
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C. Supplementary Tables and Figures

Figure C2: Screens and piece-rates under salient and non-salient conditions

(a) Salient high piece-rate (b) Salient low piece-rate

(c) Non-salient piece-rate

Notes: This figure provides an example of the participants’ computer screen, where they entered
the data in their data-entry work. The participants submit the data in these fields sequentially and
cannot edit a field after submission nor skip a field. After 30 minutes typing in a session, a new
session begins when the participant submits the current field of data they are entering. When the
session changes, the piece rates may change as well. In (a), the piece-rate for the current session
is High (Rs. 2 per 100 characters), while (b) reproduces the screen for Low piece-rates (Rs. 0.5
per 100 characters). Panel (c) shows a low piece-rate during the non-salient condition. In the
non-salient condition, there is no difference in color between the Low and High piece-rates.
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Figure C2: Estimates of the elasticity of stopping decision in response to a 10% increase in
accumulated earnings
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Notes: This figure presents estimates of the following regression (Thakral and Tô, 2020):

didp =
∑

j

1{hidp ∈ Hj}(αjhidp + βjIidp + γjXidp) + εidp (17)

where i is an individual, d a date, and p is a form page. The indicator function represents the par-
tition of the data by accumulated hours working. We use a partition of 30-minute windows. hidp

represents cumulative hours in the office (including typing and break times), and Iidp represents cu-
mulative income, which is instrumented by the share of High sessions among all preceding sessions,
not including the current session. Xidp are controls, which include: worker, date, day-in-study, and
session fixed effects; a dummy for whether the current session has high piece rates; and hour-of-day
indicators interacted with worker indicators. Standard errors are clustered at the worker-level.

In the figure, estimates βj are multiplied by 10% of the cumulative earnings and divided by the
average hazard rate in the window Hj . They represent the reactivity of the stopping decision to
an increase of 10% in cumulative earnings.
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Table C2: Summary statistics at participant, shift and session level

Panel A: Participant-level

Mean Std. Deviation Median p5 p25 p75 p95

Age 34.95 7.22 33.00 27.00 29.00 40.00 50.00
Years of Education 10.18 2.88 10.00 5.00 9.00 12.00 15.00
Number of Children 1.35 1.06 2.00 0.00 0.00 2.00 3.00
Female 0.66 0.47 - - - - -
Used Computer Before 0.28 0.45 - - - - -

Observations 452

Panel B: Shift-level (long days)

Mean Std. Deviation Median p5 p25 p75 p95

Output 17186.19 11777.57 14501.00 3983.00 9141.00 21930.00 40618.00
Typing Time (Hr.) 5.22 1.38 5.30 3.01 4.45 6.15 7.29
Productivity (Output/Min) 54.03 30.53 47.65 17.60 31.98 68.53 117.36
Voluntary Pauses (Min.) 15.56 22.74 8.83 0.00 3.40 18.82 53.67
Scheduled Pauses (Min.) 110.07 25.58 115.23 77.03 95.00 125.00 154.80
Typing Earnings 339.49 179.36 302.26 133.24 221.95 417.46 693.01
Number of Incentive Sessions 10.91 2.47 11.00 7.00 9.00 13.00 15.00
Time in Office 8.04 1.17 8.07 6.18 7.40 8.77 9.83

Observations 4945

Panel C: Session-level (regular days)

Mean Std. Deviation Median p5 p25 p75 p95

Output 1588.02 977.87 1404.00 343.00 895.00 2055.00 3558.00
Productivity (Output/Min) 55.20 32.24 48.46 16.50 32.00 70.35 120.81
Typing Time (Min.) 29.13 7.26 29.92 13.75 29.58 30.77 34.53
Voluntary Pauses (Min.) 1.47 5.97 0.00 0.00 0.00 0.07 7.80
Scheduled Pauses (Min.) 10.20 17.10 0.00 0.00 0.00 15.00 40.00
Typing Earnings 31.42 20.80 24.37 9.28 16.81 42.30 73.09
Performance Earnings 20.81 20.29 13.32 1.26 5.68 31.22 62.12
Attendance Earnings 10.61 2.50 10.84 5.00 10.76 11.20 12.55

Observations 54286

Notes: This table presents summary statistics for three different units of observations: participants, shifts, and incentive sessions. The
panels in the shift and incentive session levels only include regular days (see section A). p5, p25, p75, and p95 are the 5th, 25th, 75th, and
95th percentile of the variables, respectively.
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Table C3: Earnings variation explained by piece-rates

Panel A: Session-level earnings
(1) (2) (3) (4)

Earnings Earnings Earnings Earnings

Mean squared error 434.1 227.3 314.6 108.3
R2 0.00 0.48 0.28 0.75

High piece-rate dummy X X
Worker fixed effects X X
Observations 53194 53194 53194 53194

Panel B: Cumulative earnings (Yt−1)
(1) (2) (3) (4)

Cum. Earnings Cum. Earnings Cum. Earnings Cum. Earnings

Mean squared error 23702.8 7896.2 17759.9 3711.8
R2 0.00 0.67 0.26 0.84

Cumulative number of High piece-rates X X
Worker fixed effects X X
Observations 53194 53194 53194 53194

Notes: This table presents the amount of earnings variation explained by piece-rate variation. In panel A, the
variable of interest is earnings at the session-level, while panel B focuses on cumulative earnings until session t − 1.
Overall, the piece-rates alone explain 48% of the earnings in a session and 67% of cumulative earnings (column
1). It also has significantly more explanatory power than worker-specific intercepts (comparing columns 2 and 3).
Together, worker-specific intercepts and piece-rates explain 75% of session-level earnings and 84% of cumulative
earnings (column 4). These results indicate that piece-rates can provide reasonable inferences about earnings in a
shift, while also being easily trackable (see Figure C2 and Table C6 for evidence that piece-rates were easily observable
and workers did, in fact, observe them). This exercise is partly conservative since one component of earnings is a
fixed hourly-rate, which is constant throughout the whole study and linear in the number of hours worked, making
it easy to track by workers.
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Table C4: Effects of piece-rate variation on labor supply

Regular days Regular, conditional on wt−1 = low Regular, conditional on wt−1 = high
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Output Work Breaks Quit Output Work Breaks Quit Output Work Breaks Quit

Total effect: lags 1-4 -98.45 0.88 0.04
(12.31) (0.19) (0.01)
[0.00] [0.00] [0.00]

Total effect: lags 2-4 -42.16 0.51 0.01 2.63 0.03 -0.01 -77.75 0.90 0.03
(9.49) (0.14) (0.01) (12.05) (0.11) (0.01) (14.13) (0.24) (0.01)
[0.00] [0.00] [0.05] [0.83] [0.77] [0.14] [0.00] [0.00] [0.00]

High Lag 1 -56.292 0.367 0.031
(6.172) (0.083) (0.004)
[0.00] [0.00] [0.00]

High Lag 2 -18.225 0.219 0.008 15.469 -0.068 -0.005 -42.293 0.476 0.018
(5.120) (0.065) (0.003) (6.405) (0.075) (0.005) (7.907) (0.115) (0.005)
[0.00] [0.00] [0.01] [0.02] [0.36] [0.28] [0.00] [0.00] [0.00]

High Lag 3 -11.453 0.127 0.000 -6.982 0.021 -0.001 -16.482 0.191 0.001
(4.616) (0.068) (0.003) (6.282) (0.070) (0.004) (7.558) (0.122) (0.005)
[0.01] [0.06] [0.94] [0.27] [0.76] [0.79] [0.03] [0.12] [0.77]

High Lag 4 -12.482 0.167 0.003 -5.852 0.081 -0.006 -18.974 0.231 0.011
(5.607) (0.069) (0.003) (6.157) (0.066) (0.004) (8.340) (0.115) (0.005)
[0.03] [0.02] [0.31] [0.34] [0.23] [0.15] [0.02] [0.04] [0.03]

High 284.706 -1.060 -0.083 261.394 -0.842 -0.077 309.734 -1.267 -0.089
(12.128) (0.100) (0.004) (12.226) (0.090) (0.005) (14.230) (0.154) (0.005)

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

Excluded Group Mean 1470.75 1.87 0.14 1512.75 1.70 0.11 1416.59 2.10 0.18
Excluded Group SD 941.48 6.24 0.34 925.67 5.00 0.31 958.83 7.53 0.38
Observations 33716 33716 33716 16181 16181 16181 17532 17532 17532
Participants 452 452 452 452 452 452 452 452 452

Notes: This table presents estimates of Equation (3) for three labor supply outcomes: output, work breaks, and a dummy indicating the
decision to quit for the day. All estimates use the sample of regular days, when participants had full discretion to choose when to quit,
replicating the same columns in Table 1. Columns 1-3 use the entire sample. In columns 4-6, we restrict the sample to sessions for which
the previous session had a Low piece rate, addressing dynamic selection (see Proposition 2). In columns 7-9, we restrict the sample to
sessions for which the previous session had a High piece rate. Row 1 computes the sum of the four lags, while row 2 considers the effect
of lags 2-4 to ensure comparability between columns 1-3 and the others. “Excluded group” stands for the sample where all piece-rate
indicators included in the regression are equal to zero. Standard errors clustered at the participant level are displayed in parenthesis,
with the associated p-values in brackets.
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Table C5: Effect of earnings variation from cognitive tasks on labor supply

(1) (2) (3)
Output (post-task) Voluntary pauses (post-task) Time stopped typing (hr.)

DoublePay -8.246 -0.399 -0.037
(109.334) (0.354) (0.043)

[0.94] [0.26] [0.39]

Control Group Mean 6657.76 6.25 17.78
Control Group SD 5596.49 15.84 1.32
Observations 7416 7416 4912
Participants 452 452 452

Notes: This table presents estimates from Equation (16) for three labor supply outcomes: output, volun-
tary pauses, and the hour of day a participant decides to quit typing. “DoublePay” is a dummy capturing
whether the payment for any of the cognitive tasks was doubled. We only consider outcomes after the cog-
nitive task has taken place. The sample includes observations for both short and regular days, except for
column 3, which includes only regular days, when participants had full discretion to choose when to quit
(see Section A). Working days in which participants did not complete the cognitive task are excluded from
the sample (33 observations). Standard errors clustered at the worker level are displayed in parenthesis,
with the associated p-values in brackets.
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Table C6: Effect of piece-rate variation on labor supply - differences by piece-rate salience

(1) (2) (3)
Output Work Breaks Quit

High Lag 1 × Salience -16.384 -0.113 0.004
(12.615) (0.152) (0.008)

[0.19] [0.46] [0.60]
High Lag 2 × Salience -15.370 0.085 0.007

(11.788) (0.162) (0.007)
[0.19] [0.60] [0.32]

High Lag 3 × Salience 24.617 0.097 -0.010
(10.738) (0.162) (0.007)

[0.02] [0.55] [0.18]
High Lag 4 × Salience 11.635 -0.156 -0.001

(10.548) (0.165) (0.007)
[0.27] [0.34] [0.88]

High 292.030 -1.046 -0.083
(14.569) (0.145) (0.006)

[0.00] [0.00] [0.00]
Salience -6.579 0.055 0.001

(15.747) (0.173) (0.009)
[0.68] [0.75] [0.86]

High × Salience 18.232 -0.154 -0.008
(12.431) (0.160) (0.007)

[0.14] [0.34] [0.23]
High Lag 1 -50.249 0.438 0.030

(9.638) (0.134) (0.006)
[0.00] [0.00] [0.00]

High Lag 2 -11.693 0.164 0.003
(8.635) (0.135) (0.006)
[0.18] [0.23] [0.56]

High Lag 3 -25.916 0.019 0.004
(7.844) (0.125) (0.005)
[0.00] [0.88] [0.48]

High Lag 4 -23.285 0.230 0.006
(8.229) (0.133) (0.005)
[0.00] [0.08] [0.29]

Excluded Group Mean 1562.35 1.89 0.14
Excluded Group SD 953.44 6.63 0.34
Observations 27654 27654 27654
Participants 449 449 449

Notes: This table reproduces the regressions from Equation (3) interacting the
piece-rate indicators with variables capturing whether a shift has salient or non-
salient piece-rates (for a visual comparison between salient and non-salient piece-
rates, see Figure C2). The coefficients of interest are the difference-in-differences
interaction coefficients displayed in rows 1-4. Taken together, the interactions shows
that there is little difference between reactions to lagged piece rates under salient
and non-salient conditions. If piece rates are negatively related to labor supply
and salience improves their observation, we should expect greater magnitudes in
coefficients (in this case, more negative coefficients). Not only the signs are over-
all mixed, but the estimates are also statistically insignificant. The difference in
number of observations when compared to Table 1 of the main body is due to: i)
the randomization of the salient/non-salient conditions only starts at day 6 of the
experiment; ii) days 6, 7 and 8 are special days and thus excluded from the sample
(see section A). The difference in number of participants when compared to Table
1 is due to three workers being present only until the 8th day of the study. Er-
rors clustered at the worker-level are displayed in parenthesis, with the associated
p-values in brackets.
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Table C7: Effect of piece-rate variation on labor supply - first week versus last week

(1) (2) (3) (4) (5) (6)
Output Work Breaks Quit Output Work Breaks Quit

Total effect: lags 1-4 -74.27 0.60 0.03 -90.66 0.62 0.03
(18.77) (0.29) (0.01) (31.20) (0.26) (0.02)
[0.00] [0.04] [0.02] [0.00] [0.02] [0.17]

High Lag 1 -42.79 0.198 0.023 -54.83 0.298 0.024
(7.89) (0.101) (0.006) (12.96) (0.128) (0.007)
[0.00] [0.05] [0.00] [0.00] [0.02] [0.00]

High Lag 2 -14.57 0.209 0.005 -19.29 0.146 0.004
(7.82) (0.098) (0.005) (11.31) (0.090) (0.007)
[0.06] [0.03] [0.36] [0.09] [0.10] [0.61]

High Lag 3 -8.79 0.153 -0.001 -6.10 0.220 -0.001
(7.51) (0.107) (0.006) (11.13) (0.119) (0.008)
[0.24] [0.15] [0.81] [0.58] [0.06] [0.92]

High Lag 4 -8.11 0.038 0.002 -10.44 -0.045 0.001
(7.40) (0.100) (0.006) (12.06) (0.108) (0.007)
[0.27] [0.71] [0.75] [0.39] [0.68] [0.89]

High 232.32 -0.823 -0.077 344.754 -1.128 -0.090
(12.81) (0.119) (06) (17.337) (0.130) (0.007)
[0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

Excluded Group Mean 1295.24 1.76 0.13 1616.37 1.95 0.14
Excluded Group SD 890.78 5.69 0.34 937.00 5.85 0.35
Observations 12887 12887 12887 10092 10092 10092
Participants 452 452 452 426 426 426

Notes: This table presents estimates of Equation 3 for three labor supply outcomes: output,
work breaks, and a dummy indicating the decision to quit for the day. Columns 1 to 3 restrict
the sample to the first seven regular days, when participants had full discretion to choose when
to quit (see section A). This covers days 3 through 12 (days 6, 7 and 8 are “special days”).
Columns 4 to 6 uses only the last seven regular days, covering days 20 through 27, except for
day 26 (days 26 and 28 are “special days”). Row 1 presents the sum of the four lags. “Excluded
group” stands for the sample where all piece-rate indicators included in the regression are equal
to zero. Standard errors clustered at the participant-level are displayed in parenthesis, with the
associated p-values in brackets.
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Table C8: Effect of piece-rate variation on labor supply - controlling for worker-date fixed
effects

(1) (2) (3) (4) (5) (6)
Output Work Breaks Quit Output Work Breaks Quit

Total effect: lags 1-4 -98.45 0.88 0.04 -73.43 0.85 0.02
(12.31) (0.19) (0.01) (15.75) (0.22) (0.01)
[0.00] [0.00] [0.00] [0.00] [0.00] [0.08]

High Lag 1 -56.29 0.367 0.031 -45.65 0.372 0.022
(6.17) (0.083) (0.004) (6.81) (0.086) (0.004)
[0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

High Lag 2 -18.22 0.219 0.008 -12.79 0.217 0.003
(5.12) (0.065) (0.003) (5.75) (0.078) (0.004)
[0.00] [0.00] [0.01] [0.03] [0.01] [0.50]

High Lag 3 -11.45 0.127 0.000 -5.37 0.117 -0.005
(4.62) (0.068) (0.003) (5.36) (0.069) (0.004)
[0.01] [0.06] [0.94] [0.32] [0.09] [0.20]

High Lag 4 -12.48 0.167 0.003 -9.61 0.146 -0.001
(5.61) (0.069) (0.003) (5.95) (0.073) (0.004)
[0.03] [0.02] [0.31] [0.11] [0.05] [0.84]

High 284.71 -1.060 -0.083 287.98 -1.032 -0.086
(12.13) (0.100) (0.004) (12.53) (0.099) (0.004)
[0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

Worker-Date FE X X X
Excluded Group Mean 1470.75 1.87 0.14 1470.75 1.87 0.14
Excluded Group SD 941.48 6.24 0.34 941.48 6.24 0.34
Observations 33716 33716 33716 33676 33676 33676
Participants 452 452 452 452 452 452

Notes: This table presents estimates of Equation 3 for three labor supply outcomes: output,
work breaks, and a dummy indicating the decision to quit for the day. Columns 1 to 3 restrict
the sample to regular days, when participants had full discretion to choose when to quit (see
section A). Columns 4 to 6 also uses only regular days, but includes worker-date indicators as
controls. Row 1 presents the sum of the four lags. “Excluded group” stands for the sample
where all piece-rate indicators included in the regression are equal to zero. Standard errors
clustered at the participant level are displayed in parenthesis, with the associated p-values in
brackets.
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